Would it be possible to automatically associate ancient pictures to modern ones and create fancy cultural heritage city maps? We introduce here the task of recognizing the location depicted in an old photo given modern annotated images collected from the Internet. We present an extensive analysis on different features, looking for the most discriminative and most robust to the image variability induced by large time lags. Moreover, we show that the described task benefits from domain adaptation.

Location recognition over large time lags / Fernando, Basura; Tommasi, Tatiana; Tuytelaars, Tinne. - In: COMPUTER VISION AND IMAGE UNDERSTANDING. - ISSN 1077-3142. - ELETTRONICO. - 139:(2015), pp. 21-28. [10.1016/j.cviu.2015.05.016]

Location recognition over large time lags

TOMMASI, TATIANA;
2015

Abstract

Would it be possible to automatically associate ancient pictures to modern ones and create fancy cultural heritage city maps? We introduce here the task of recognizing the location depicted in an old photo given modern annotated images collected from the Internet. We present an extensive analysis on different features, looking for the most discriminative and most robust to the image variability induced by large time lags. Moreover, we show that the described task benefits from domain adaptation.
2015
Cross-domain image retrieval; Domain adaptation; Location recognition; Software; 1707; Signal Processing
01 Pubblicazione su rivista::01a Articolo in rivista
Location recognition over large time lags / Fernando, Basura; Tommasi, Tatiana; Tuytelaars, Tinne. - In: COMPUTER VISION AND IMAGE UNDERSTANDING. - ISSN 1077-3142. - ELETTRONICO. - 139:(2015), pp. 21-28. [10.1016/j.cviu.2015.05.016]
File allegati a questo prodotto
File Dimensione Formato  
Fernando_Preprint-Location-recognition_2015.pdf

accesso aperto

Note: https://www.sciencedirect.com/science/article/pii/S107731421500137X?via%3Dihub
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF
Fernando_Location-recognition_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/900396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact